INVITED REVIEW|2 Article(s)
Synchrotron Radiation and Its Applications Progress in Inorganic Materials
Yunpeng LIU, Weifan SHENG, and Zhonghua WU
Synchrotron Radiation (SR) is the electromagnetic radiation emitted along the tangent direction of the electron orbit by high-speed electrons moving in a circular accelerator when passing through a bending magnet. SR source, as a platform-type scientific and technological infrastructure, plays an important supporting role in the research and development of inorganic materials. SR techniques become an indispensable research tools of modern science and technology, and inorganic materials are one of the main application fields of SR techniques. Compared with conventional light source used for research, SR techniques in the study of inorganic materials have following obvious advantages: 1) higher obtained data qualities; 2) better spatial and temporal resolutions; 3) easier simulated in-situ and material service environment; 4) synchronously acquiring multi-scale, multi-faceted and multi-type structural information; 5) new means more likely to detect new structural characteristics. SR techniques help solve some key scientific problems in the field of inorganic materials, and greatly promote their research. Firstly, this paper briefly introduces the current status of SR sources and their three existing domestic SR facilities: Beijing Synchrotron Radiation Facility (BSRF), Shanghai Synchrotron Radiation Facility (SSRF), and National Synchrotron Radiation Laboratory (NSRL). Secondly, some application examples related to inorganic materials research are given from the four aspects of X-ray diffraction, scattering, spectroscopy and imaging. Finally, summary and prospect are given to the SR source, the structurally characterization techniques, and their application in inorganic materials.
Journal of Inorganic Materials
  • Publication Date: Apr. 05, 2021
  • Vol. 36, Issue 9, 901 (2021)
Noble Metal Phosphide Electrocatalysts and Their Synchrotron-based X-ray Absorption Spectroscopy
Yuzhu ZHOU, Youkui ZHANG, and Li SONG
Electrocatalytic technology is one of the most attractive technologies for renewable energy storage and conversion, and nano-scale noble metals exhibit excellent electrocatalytic activity. However, because of the scarcity of precious metal resources and high development costs, reducing the dosage of precious metals while improving activity and durability of catalysts is always the research focus in the field of catalysis applications. Among various candidates, noble metal phosphide-based new electrocatalysts have received widespread attention due to their multifunctional active sites, adjustable structure and composition, and unique physical and chemical properties. Compared with transition metal phosphide, noble metal phosphides have higher intrinsic activity, and exhibit better stability under acid condition. In this review, the research progress of noble metal phosphides was mainly summarized including design synthesis, structural engineer, X-ray absorption spectroscopic characterization, and electrocatalytic applications. Eventually, the current challenges and opportunities for the development of noble metal phosphide-based electrocatalysts were discussed, along with the future prospection of in situ synchrotron radiation X-ray characterizations that might be applied in this field.
Journal of Inorganic Materials
  • Publication Date: Mar. 23, 2021
  • Vol. 36, Issue 3, 225 (2021)